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Problem 1: [35 Marks] 

f O if XE (Q, 
1-1. Let f: JR JR such that x 1---+ l ' . . L 

1, If X <j_ {Q. 
Show that f is Borel-measurable. 

(Hint: for any a E JR, consider E = {x E JR: f(x) < a} and show that J- 1 (E) E B(JR)) 
00 

1-2. Let (X, F) be a measurable space. Prove that if An E F, n E N, then n An E F. 
n=l 

[10] 

[5] 

1-3. Let D be a non-empty set and Fa C P(rt), a E J an arbitrary collection of O"-algebras on n. State 
the definition of a O"-algebra and prove that [4+6=10] 

r._ r·1 r 
J .- I J a is a a-algebra. 

aEI 

1-4. Let (X, A,µ) be a measure space. 
(i) What does it mean that (X, A,µ) be a measure space? [3] 
(ii) Show that for any A, BE A, we have the equality: µ(AU B) +µ(An B) =µ(A)+ µ(B). [7] 

(Hint: Consider two cases: (i) µ(A)= oo or µ(B) = oo; (ii) µ(A),µ(B) < oo and then express A,B,AUB 
in terms of A\ B, B \ A, An B where necessary.) 

Problem 2: [20 Marks] 
2-1. Define what is a compact set in a topological space. [3] 
2-2. Show that (0, 1] is not a compact set for usual topology of JR. [9] 
2-3. Let E be a Hausdorff topological space and { an}nEN a sequence of elements of E converging to a. 
Show that K = {anln EN} U {n} is compact in E. [8] 

Problem 3: [35 Marks] 
3-1. Use the convexity of x I-+ ex to prove the Arithmetic-Geometric Mean inequality: 

\:Ix, y > 0, and O < >-< 1, we have: x>-yi->. ::s; >-x + (1 - >-)y. 

3-2. Use the inequality in question 2-1. to prove Young's inequality: 

aP /Jq , l 1 a/3 ::s; - + -, \:/a,/3 > 0, wnere p,q E (1,oo): - + - = 1. 
p q p q 

3-3. Use the result in question 3-2. to prove Holder's inequality: 

n ( n ) 1/p ( n \ 1/q 
~IXiYil::::; ~lxilP ~IYilq) ,\:Ix= (xi),y= (yi) EJRn, p,q as above. 

[5] 

[6] 

[7] 

3-4. Consider (X, II· ll00 ,1), where X = C1 [0, 1] and llfll00 ,1 = sup IJ(x)I + sup lf'(x)I and also consider 
xE(O,l] xE(O,l] 

(Y, II· !loo), where Y = C[O, 1]. 
3-4-1. Show that T = d: : X Y is a bounded linear operator. [7] 

d 
3-4-2. Show that T = dx: D(T) £;; Y Y is an unbounded linear operator, where D(T) = C1[0, 1]. [10] 
(Hint: use un(x) = sin(mrx)). 

God bless you ! ! ! 


